通用视觉(GPV)系统是旨在解决各种视觉任务的模型,而无需进行架构更改。如今,GPV主要从大型完全监督的数据集中学习技能和概念。通过获取数据以迅速学习每个技能的每个概念,将GPV扩展到数万个概念都变得令人望而却步。这项工作提出了一种有效且廉价的替代方法:从监督数据集中学习技能,从Web图像搜索中学习概念,并利用GPV的关键特征:跨技能传递视觉知识的能力。我们使用跨越10K+视觉概念的1M+图像的数据集来演示3个基准上的两个现有GPV(GPV-1和VL-T5)的Webly Supumented概念扩展:5个基于可可的数据集(80个主要概念),这是一个新的策划系列,这是一个新的策划系列。基于OpenImages和VisualGenome存储库(〜500个概念)以及Web衍生的数据集(10K+概念)的5个数据集。我们还提出了一种新的体系结构GPV-2,该架构支持各种任务 - 从分类和本地化等视觉任务到Qu Viewer+语言任务,例如QA和字幕,再到更多的利基市场,例如人类对象互动检测。 GPV-2从Web数据中受益匪浅,并且在这些基准测试中胜过GPV-1和VL-T5。我们的数据,代码和Web演示可在https://prior.allenai.org/projects/gpv2上获得。
translated by 谷歌翻译
We introduce camouflaged data poisoning attacks, a new attack vector that arises in the context of machine unlearning and other settings when model retraining may be induced. An adversary first adds a few carefully crafted points to the training dataset such that the impact on the model's predictions is minimal. The adversary subsequently triggers a request to remove a subset of the introduced points at which point the attack is unleashed and the model's predictions are negatively affected. In particular, we consider clean-label targeted attacks (in which the goal is to cause the model to misclassify a specific test point) on datasets including CIFAR-10, Imagenette, and Imagewoof. This attack is realized by constructing camouflage datapoints that mask the effect of a poisoned dataset.
translated by 谷歌翻译
The performance of differentially private machine learning can be boosted significantly by leveraging the transfer learning capabilities of non-private models pretrained on large public datasets. We critically review this approach. We primarily question whether the use of large Web-scraped datasets should be viewed as differential-privacy-preserving. We caution that publicizing these models pretrained on Web data as "private" could lead to harm and erode the public's trust in differential privacy as a meaningful definition of privacy. Beyond the privacy considerations of using public data, we further question the utility of this paradigm. We scrutinize whether existing machine learning benchmarks are appropriate for measuring the ability of pretrained models to generalize to sensitive domains, which may be poorly represented in public Web data. Finally, we notice that pretraining has been especially impactful for the largest available models -- models sufficiently large to prohibit end users running them on their own devices. Thus, deploying such models today could be a net loss for privacy, as it would require (private) data to be outsourced to a more compute-powerful third party. We conclude by discussing potential paths forward for the field of private learning, as public pretraining becomes more popular and powerful.
translated by 谷歌翻译
We study the task of training regression models with the guarantee of label differential privacy (DP). Based on a global prior distribution on label values, which could be obtained privately, we derive a label DP randomization mechanism that is optimal under a given regression loss function. We prove that the optimal mechanism takes the form of a ``randomized response on bins'', and propose an efficient algorithm for finding the optimal bin values. We carry out a thorough experimental evaluation on several datasets demonstrating the efficacy of our algorithm.
translated by 谷歌翻译
We study the relationship between adversarial robustness and differential privacy in high-dimensional algorithmic statistics. We give the first black-box reduction from privacy to robustness which can produce private estimators with optimal tradeoffs among sample complexity, accuracy, and privacy for a wide range of fundamental high-dimensional parameter estimation problems, including mean and covariance estimation. We show that this reduction can be implemented in polynomial time in some important special cases. In particular, using nearly-optimal polynomial-time robust estimators for the mean and covariance of high-dimensional Gaussians which are based on the Sum-of-Squares method, we design the first polynomial-time private estimators for these problems with nearly-optimal samples-accuracy-privacy tradeoffs. Our algorithms are also robust to a constant fraction of adversarially-corrupted samples.
translated by 谷歌翻译
Biomedical image segmentation is one of the fastest growing fields which has seen extensive automation through the use of Artificial Intelligence. This has enabled widespread adoption of accurate techniques to expedite the screening and diagnostic processes which would otherwise take several days to finalize. In this paper, we present an end-to-end pipeline to segment lungs from chest X-ray images, training the neural network model on the Japanese Society of Radiological Technology (JSRT) dataset, using UNet to enable faster processing of initial screening for various lung disorders. The pipeline developed can be readily used by medical centers with just the provision of X-Ray images as input. The model will perform the preprocessing, and provide a segmented image as the final output. It is expected that this will drastically reduce the manual effort involved and lead to greater accessibility in resource-constrained locations.
translated by 谷歌翻译
Breaking down a document or a conversation into multiple contiguous segments based on its semantic structure is an important and challenging problem in NLP, which can assist many downstream tasks. However, current works on topic segmentation often focus on segmentation of structured texts. In this paper, we comprehensively analyze the generalization capabilities of state-of-the-art topic segmentation models on unstructured texts. We find that: (a) Current strategies of pre-training on a large corpus of structured text such as Wiki-727K do not help in transferability to unstructured texts. (b) Training from scratch with only a relatively small-sized dataset of the target unstructured domain improves the segmentation results by a significant margin.
translated by 谷歌翻译
Explainability has been widely stated as a cornerstone of the responsible and trustworthy use of machine learning models. With the ubiquitous use of Deep Neural Network (DNN) models expanding to risk-sensitive and safety-critical domains, many methods have been proposed to explain the decisions of these models. Recent years have also seen concerted efforts that have shown how such explanations can be distorted (attacked) by minor input perturbations. While there have been many surveys that review explainability methods themselves, there has been no effort hitherto to assimilate the different methods and metrics proposed to study the robustness of explanations of DNN models. In this work, we present a comprehensive survey of methods that study, understand, attack, and defend explanations of DNN models. We also present a detailed review of different metrics used to evaluate explanation methods, as well as describe attributional attack and defense methods. We conclude with lessons and take-aways for the community towards ensuring robust explanations of DNN model predictions.
translated by 谷歌翻译
Recent studies in Vision-and-Language Navigation (VLN) train RL agents to execute natural-language navigation instructions in photorealistic environments, as a step towards robots that can follow human instructions. However, given the scarcity of human instruction data and limited diversity in the training environments, these agents still struggle with complex language grounding and spatial language understanding. Pretraining on large text and image-text datasets from the web has been extensively explored but the improvements are limited. We investigate large-scale augmentation with synthetic instructions. We take 500+ indoor environments captured in densely-sampled 360 degree panoramas, construct navigation trajectories through these panoramas, and generate a visually-grounded instruction for each trajectory using Marky, a high-quality multilingual navigation instruction generator. We also synthesize image observations from novel viewpoints using an image-to-image GAN. The resulting dataset of 4.2M instruction-trajectory pairs is two orders of magnitude larger than existing human-annotated datasets, and contains a wider variety of environments and viewpoints. To efficiently leverage data at this scale, we train a simple transformer agent with imitation learning. On the challenging RxR dataset, our approach outperforms all existing RL agents, improving the state-of-the-art NDTW from 71.1 to 79.1 in seen environments, and from 64.6 to 66.8 in unseen test environments. Our work points to a new path to improving instruction-following agents, emphasizing large-scale imitation learning and the development of synthetic instruction generation capabilities.
translated by 谷歌翻译
早期发现阿尔茨海默氏病对于部署干预措施和减慢疾病进展至关重要。在过去的十年中,已经探索了许多机器学习和深度学习算法,目的是为阿尔茨海默氏症建立自动检测。数据增强技术和先进的深度学习体系结构的进步已经在该领域开辟了新的边界,研究正在快速发展。因此,这项调查的目的是概述有关阿尔茨海默氏病诊断深度学习模型的最新研究。除了对众多数据源,神经网络架构以及常用的评估措施进行分类外,我们还对实施和可重复性进行了分类。我们的目标是协助感兴趣的研究人员跟上最新的发展,并将早期的调查作为基准。此外,我们还指出了该主题的未来研究方向。
translated by 谷歌翻译